
Partitioning part 1 - Solutions

1. Aqueous solubility of chlorinated alkanes

Recall from the notes that within a class of compounds (here: chlorinated alkanes), there is a linear relationship between $\log C_w^{sat}$ and the molar volume. Plot the data from the table as follows:

We can thus establish the relationship: $\log C_w^{sat} = -0.032*(molar volume)+1.47$

For dichloromethane we find: $log C_w^{sat} = -0.594$; $C_w^{sat} = 0.25 mol/L$.

Now we can determine the K_{ow} using the general relationship between K_{ow} and C_w^{sat}:

 $\log K_{i,ow} = (-\log C_{i,w}^{sat} + 3.70 + \log MW_i)/1.08.$

In this relationship, C_w^{sat} must be in units of ppm, whereby 1 ppm = 1 mg/L. So

 $C_w^{\text{sat}} = (0.25 \text{ mol/L})*(85 \text{ g/mol}) = 21.25 \text{ g/L} = 21250 \text{ ppm}.$

 $K_{i,ow} = (-\log (21250) + 3.70 + \log(85))/1.08 = 1.20; K_{ow} = 15.85$

2. Benzene in groundwater

First calculate $K_{benzen, aw}$ at 5°C. This can be done using the relationship $ln\frac{K_{12}(T_2)}{K_{12}(T_1)} = \frac{\Delta_{12}H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$ Or, more simply, from table 3.5 given in the notes, we know that – given a $\Delta_{12}H$ of 20 kJ/mol – K_{12} decreases by a factor of 1.33 for every 10°C decrease in temperature. So:

$$K_{benzen,aw}$$
 (5°C)= $K_{benzen,aw}$ (25°C) /(1.33)²=0.12 = $C_{benzen,air}$ / $C_{benzene,water}$

Since we know both Kbenzene, aw and Cbenzene, water, we can calculate the concentration of benzene in air:

$$C_{benzene, air} = K_{benzene, aw} * 100 \mu g/L = 12 \mu g/L$$

We have 900 mL of air in the bottle, so the total mass of benzene in air is:

$$0.9 L * 12 \mu g/L = 10.8 \mu g$$

The mass of benzene in 100 mL water is:

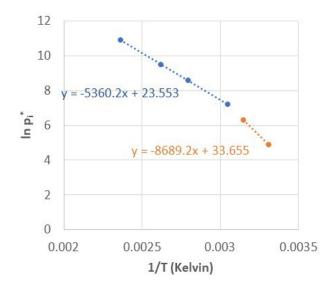
Environmental Chemistry, Homework set

Partitioning part 1 - Solutions

$$0.1 L * 100 \mu g/L = 10 \mu g$$

So total mass of benzene in the bottle is:

$$10.8 \mu g + 10 \mu g = 20.8 \mu g$$


Considering that all this benzene originally came from 100 mL of groundwater, the concentration of benzene in the original groundwater was 20.8 μ g/ 100mL = 208 μ g/L.

3. Disinfectant in air

Recall the relationship between partitioning constants and temperature:

$$\ln K_{12} = -\frac{\Delta_{12}G}{RT} + \ln \left(constant \right)$$

Plot $\ln p_i^*$ vs. 1/T (in Kelvin) to find p_i^* (separately for T > T_m, where 1,4-DCB is a liquid and T < T_m, where it is a solid). We find:

Inserting for T = 20 °C, we obtain: $\ln p_i^* = -8689.2*(1/293) + 33.655 = 3.99; p_i^* = 54.5 \text{ Pa}$ Inserting for T = 60 °C, we obtain: $\ln p_i^* = -5360.2*(1/333) + 23.553 = 7.46; p_i^* = 1730.7 \text{ Pa}$